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ABSTRACT
Linux containers have become very popular these days due to their
lightweight nature and portability. Numerous web services are now
deployed as clusters of containers. Kubernetes is a popular container
management system that enables users to deploy such web services
easily, and hence, it facilitates web service migration to the other
side of the world. However, since Kubernetes relies on external
load balancers provided by cloud providers, it is difficult to use in
environments where there are no supported load balancers. This
is particularly true for on-premise data centers, or for all but the
largest cloud providers. In this paper, we proposed a portable load
balancer that was usable in any environment, and hence facilitated
web services migration. We implemented a containerized software
load balancer that is run by Kubernetes as a part of container cluster,
using Linux kernel’s Internet Protocol Virtual Server(IPVS). Then
we compared the performance of our proposed load balancer with
existing iptables Destination Network Address Translation (DNAT)
and the Nginx load balancers. During our experiments, we also
clarified the importance of two network conditions to derive the
best performance: the first was the choice of the overlay network
operation mode, and the second was distributing packet processing
to multiple cores. The results indicated that our proposed IPVS load
balancer improved portability of web services without sacrificing
the performance.
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1 INTRODUCTION
Recently, Linux containers have drawn significant amount of atten-
tion because they are lightweight, portable, and repeatable. Linux
containers are generally more lightweight than virtual machine
(VM) clusters, because the containers share the kernel with the
host operating system (OS), even though they maintain separate
execution environments. They are generally portable because the
process execution environments are archived into tar files, so when-
ever one attempts to run a container, the exact same file systems
are restored from the archives even when totally different data
centers are used. This means that containers can provide repeat-
able and portable execution environments. For the same reasons,
Linux containers are attractive for web services as well, and it is
expected that web services consisting of container clusters would
be capable of being migrated easily for variety of purposes. For
example disaster recovery, cost performance improvemets, legal
compliance, and shortening the geographical distance to customers
are the main concerns for web service providers in e-commece,
gaming, Financial technology(Fintech) and Internet of Things(IoT)
field.

Kubernetes[3], which is one of the popular container cluster man-
agement systems, enables easy deployment of container clusters.
Since Kubernetes hides the differences in the base environments,
users can easily deploy a web service on different cloud providers
or on on-premise data centers, without adjusting the container
cluster configurations to the new environment. This allows a user
to easily migrate a web service consisting of a container cluster
even to the other side of the world. A user starts the container
cluster in the new location, route the traffic there, then stop the old
container cluster at his or her convenience. This is a typical web
service migration scenario.

However, this scenario only works when the user migrates a
container cluster among major cloud providers including Google
Cloud Platform (GCP), Amazon Web Services (AWS), and Microsoft
Azure. The Kubernetes does not include a load balancer, and is
heavily dependent on external load balancers that are set up on the
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fly by cloud providers through their application protocol interfaces
(APIs). These external load balancers distribute incoming traffic to
every server that hosts containers. The traffic is then distributed
again to destination containers using iptables destination network
address translation (DNAT)[17, 18] rules in a round-robin manner.
The problem happens in the environment with a load balancer that
is not supported by the Kubernetes, e.g. in an on-premise data cen-
ter with a bare metal load balancer. In such environments, the user
needs to manually configure the static route for inbound traffic in
an ad-hoc manner. Since the Kubernetes fails to provide an uniform
environment from a container cluster view point, migrating con-
tainer clusters among the different environments will always be a
burden.

In order to solve this problem by eliminating the dependency
on external load balancer, herein we propose a containerized soft-
ware load balancer that is run by Kubernetes as as a part of web
services consisting of container cluster. It enables a user to easily
deploy a web service on different environment without modifica-
tion, because the load balancer is included in the web service itself.
To accomplish this, we will containerize Linux kernel’s Internet
Protocol Virtual Server (IPVS)[26] Layer 4 load balancer using an
existing Kubernetes ingress[2] framework, as a proof of concept.
To prove that our approach will not significantly deteriorate the
performance, we will also compare the performance of our pro-
posed load balancer with those of iptables DNAT load balancer
and the Nginx Layer 7 load balancing. The results indicated that
the proposed load balancer could improve the portability of con-
tainer clusters without performance degradation compared with
the existing load balancer. The performance of the proposed load
balancer may be affected by the network configurations of overlay
network and distributed packet processing. We also evaluate how
the network configurations affects the performance and discusses
the best setting that derives the best performance.

The contributions of this paper are as follows: 1) We propose
a portable software load balancer that is runnable on any cloud
provider, or on on-premise data centers, as a part of a container
cluster. 2) We discuss feasibility of the proposed load balancer by
comparing its performance with other load balancers. 3) We also
discuss usable overlay network configurations and clarify the im-
portance of techniques that will draw the best performance from
such load balancers.

The rest of the paper is organized as follows. Section 2 high-
lights work that deals specifically with container cluster migration,
software load balancer containerization, and load balancer related
tools within the context of the container technology. Section 3 will
explain existing architecture problems and propose our solutions.
In Section 4, experimental conditions and the parameters that we
considered to be important in our experiment will be described in
detail. Then, we will show our experimental results and discuss
the obtained performance characteristics in Section 5, which is
followed by a summary of our work in Section 6.

2 RELATEDWORK
This section highlights related work, especially that dealing with
container cluster migration, software load balancer containeriza-
tion, and load balancer tools within the context of the container
technology.

Container cluster migration: Kubernetes developers are try-
ing to add federation[1] capability for handling situations where
multiple Kubernetes clusters1 are deployed onmultiple cloud providers
or on-premise data centers, and are managed via the Kubernetes
federation API server (federation-apiserver). However, how each
Kubernetes cluster is run on different types of cloud providers
and/or on-premise data centers, especially when the load balancers
of such environments are not supported by Kubernetes, seems be-
yond the scope of that project. The main scope of this paper is to
make Kubernetes usable in environments without supported load
balancers by providing a containerized software load balancer.

Software load balancer containerization: As far as load bal-
ancer containerization is concerned, the following related work
has been identified: Nginx-ingress[14, 21] utilizes the ingress[2]
capability of Kubernetes, to implement containerized Nginx proxy
as a load balancer. Nginx itself is famous as a high-performance
web server program that also has the functionality of a Layer-7
load balancer. Nginx is capable of handling Transport Layer Secu-
rity(TLS) encryption, as well as Uniform Resource Identifier(URI)
based switching. However, the flip side of Nginx is that it is much
slower than Layer-4 switching. We compared the performance be-
tween Nginx as a load balancer and our proposed load balancer
in this paper. Meanwhile, the kube-keepalived-vip[22] project is
trying to use Linux kernel’s IPVS[26] load balancer capabilities by
containerizing the keepalived[5]. The kernel IPVS function is set
up in the host OS’s net name spaces and is shared among multiple
web services, as if it is part of the Kubernetes cluster infrastructure.
Our approach differs in that the IPVS rules are set up in container’s
net name spaces and function as a part of the web service con-
tainer cluster itself. The load balancers are configurable one by
one, and are movable with the cluster once the migration is needed.
The kube-keepalived-vip’s approach lacks flexibility and portability
whereas ours provide them. The swarm mode of the Docker[9, 10]
also uses IPVS for internal load balancing, but it is also consid-
ered as part of Docker swarm infrastructure, and thus lacks the
portability that our proposal aims to provide.

Load balancer tools in the container context: There are sev-
eral other projects where efforts have been made to utilize IPVS
in the context of container environment. For example, GORB[23]
and clusterf[19] are daemons that setup IPVS rules in the kernel
inside the Docker container. They utilize running container in-
formation stored in key-value storages like Core OS etcd[7] and
HashiCorp’s Consul[12]. Although these were usable to implement
a containerized load balancer in our proposal, we did not use them,
since Kubernetes ingress framework already provided the methods
to retrieve running container information through standard API.

1The Kubernetes cluster refers to a server cluster controlled by the Kubernetes container
management system, in this paper.
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Figure 1: Conventional architecture of a Kubernetes cluster.

3 LOAD BALANCERS IN KUBERNETES
CLUSTER

3.1 Conventional Architecture Problems
Problems commonly occur when the Kubernetes container manage-
ment system is used outside of recommended cloud providers(such
as GCP or AWS). Figure 1 shows an exemplified Kubernetes cluster.
A Kubernetes cluster typically consists of a master and nodes. They
can be physical servers or VMs. On the master, daemons that con-
trol the Kubernetes cluster are typically deployed. These daemons
include, apiserver, scheduler, controller-manager and etcd. On the
nodes, the kubelet daemon will run pods, depending the PodSpec
information obtained from the apiserver on the master. A pod is a
group of containers that share same net name space and cgroups,
and is the basic execution unit in a Kubernetes cluster.

When a service is created, the master will schedule where to run
pods and kubelets on the nodes will launch them accordingly. At
the same time, the masters will send out requests to cloud provider
API endpoints, asking them to set up external load balancers. The
proxy daemon on the nodes will also setup iptables DNAT[18] rules.
The Internet traffic will then be evenly distributed by the external
load balancer to nodes, after which it will be distributed again by
the DNAT rules on the nodes to the designated pods. The returning
packets will follow the exact same route as the incoming ones.

This architecture has the followings problems: 1) Having exter-
nal load balancers whose APIs are supported by the Kubernetes
daemons is a prerequisite. There are numerous load balancers which
is not supported by the Kubernetes. These include the bare metal
load balancers for on-premise data centers. In such cases, a user
could manually setup the routing table on the gateway so that the
traffic would be routed to one of the nodes. Then the traffic would
be distributed by the DNAT rules on the node to the designated
pods. However, this approach would require complicated network
configuration and significantly degrade the portability of container
clusters. 2) Distributing the traffic twice, first on the external load
balancers and second on each node, complicates the administration
of packet routing. Imagine a situation in which the DNAT table
on one of the nodes malfunctions. In such a case, only occasional
timeouts would be observed, which would make it very difficult to
find out which node was malfunctioning.

Figure 2: Kubernetes cluster with proposed load balancer.

In short, 1) Kubernetes can be used only in limited environments
where the external load balancers are supported, and 2) the routes
incoming traffic follow are very complex.

In order to address these problems, we propose a containerized
software load balancer that is deployable in any environment even
if there are no external load balancers.

3.2 Proposed architecture
Figure 2 shows the proposed Kubernetes cluster architecture, which
has the following characteristics: 1) Each load balancer itself is run
as a pod by Kubernetes. 2) Load balancer configurations are dy-
namically updated based on information about running pods. The
proposed load balancer can resolve the conventional architecture
problems, as follows: Since the load balancer itself is containerized,
load balancer can run in any environment including on-premise
data centers, even without external load balancers that is supported
by Kubernetes. The incoming traffic is directly distributed to desig-
nated pods by the load balancer. It makes the administration, e.g.
finding malfunctions, easier.

We designed the proposed load balancer using three components,
IPVS, keepalived, and a controller. These components are placed
in a Docker container image. The IPVS is a Layer-4 load balancer
capability, which is included in the Linux kernel 2.6.0 released in
2003 or later, to distribute incoming Transmission Control Proto-
col(TCP) traffic to real servers2[26]. For example, IPVS distributes
incoming Hypertext Transfer Protocol(HTTP) traffic destined for a
single destination IP address, to multiple HTTP servers(e.g. Apache
HTTP or nginx) running on multiple nodes in order to improve the
performance of web services. Keepalived is a management program
that performs health checking for real servers and manage IPVS
balancing rules in the kernel accordingly. It is often used together
with IPVS to facilitate ease of use. Although keepalived also sup-
ports Virtual Router Redundancy Protocol(VRRP)[13], the authors
leave that topic for future work. The controller is a daemon that

2The term, real servers refers to worker servers that will respond to incoming traffic,
in the original literature[26]. We will also use this term in the similar way.
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Figure 3: Implementation

periodically monitors the pod information on the master, and per-
forms various actions when such information changes. Kubernetes
provides ingress controller framework as the Go Language(Golang)
package to implement such controllers. We have implemented a
controller program that will feed pod state changes to keepalived
using this framework.

These are the main ideas behind our proposal. In the following
section, we will explain their implementation in detail.

3.3 Implementation
The proposed load balancer needs to dynamically reconfigure the
IPVS balancing rules whenever pods are created/deleted. Figure 3
is a schematic diagram to show the dynamic reconfiguration of the
IPVS rules. The right part of the figure shows the enlarged view of
one of the nodes where the load balancer pod(LB2) is deployed. Two
daemon programs, controller and keepalived, run in the container
inside the LB2 pod are illustrated. The keepalived manages Linux
kernel’s IPVS rules depending on the ipvs.conf configuration file.
It is also capable of health-checking the liveliness of real server,
which is represented as a combination of the IP addresses and port
numbers of the target pods. If the health check to a real server fails,
keepalived will remove that real server from the IPVS rules.

The controller monitors information concerning the running
pods of a service in the Kubernetes cluster by consulting the apis-
erver running on the master. Whenever pods are created or deleted,
the controller will automatically regenerate an appropriate ipvs.conf
and issue SIGHUP to keepalived. Then, keepalived will reload the
ipvs.conf and modify the kernel’s IPVS rules accordingly. The ac-
tual controller[16] is implemented using the Kubernetes ingress
controller[2] framework. By importing existing Golang package,
“k8s.io/ingress /core/pkg/ingress”, we could simplify the implemen-
tation, e.g. 120 lines of code.

Configurations for capabilities were needed in the implementa-
tion: adding the CAP_SYS_MODULE capability to the container to
allow the kernel to load required kernel modules inside a container,
and adding CAP_NET_ADMIN capability to the container to allow
keepalived to manipulate the kernel’s IPVS rules. For the former
case, we also needed to mount the “/lib/module” of the node’s file
system on the container’s file system.

virtual_server fwmark 1 {
delay_loop 5
lb_algo lc
lb_kind NAT
protocol TCP
real_server 172.16.21.2 80 {

uthreshold 20000
TCP_CHECK {

connect_timeout 5
connect_port 80

}
}
real_server 172.16.80.2 80 {

uthreshold 20000
TCP_CHECK {

connect_timeout 5
connect_port 80

}
}

}

Figure 4: An example of ipvs.conf

# kubectl exec -it IPVS-controller-4117154712-kv633 -- IPVSadm -L
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags

-> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 1 lc

-> 172.16.21.2:80 Masq 1 0 0
-> 172.16.80.2:80 Masq 1 0 0

Figure 5: Example of IPVS balancing rules

Figure 4 and Figure 5 show an example of an ipvs.conf file
generated by the controller and the corresponding IPVS load bal-
ancing rules, respectively. Here, we can see that the packet with
fwmark=1[4] is distributed to 172.16.21.2:80 and 172.16.80.2:80
using the masquerade mode(Masq) and the least connection(lc)[26]
balancing algorithm.

4 PERFORMANCE MEASUREMENT
We will now discuss the feasibility of the proposed load balancer by
comparing its performance with those of existing iptables DNAT
and the Nginx based load balancers. We conducted the performance
measurements using the benchmark program called wrk[11].

We also investigated the performance varying two network con-
figurations: First one is an overlay network setting[17, 24] that is
often used to build the Kubernetes cluster. Flannel[8] is one of pop-
ular overlay network technologies. We compared the performances
of three backends settings[6], i.e. operating modes of flannel, to
find the best setting. The other one is the setting for distributed
packet processing. It is well known that distributing handling of
interrupts from the network interface card(NIC) and the subsequent
IP protocol processing, among multiple cores impact the network
performance. In order to derive the best performance from load
balancers, we also investigated how this setting would affect their
performance.



A Portable Load Balancer for Kubernetes Cluster HPC Asia 2018, January 28–31, 2018, Chiyoda, Tokyo, Japan

Figure 6: Benchmark setup

The following subsections explain these in further detail.

4.1 Benchmark method
We measured the performance of the load balancers using the wrk.
Figure 6 illustrates a schematic diagram of our experimental setup.
Multiple pods are deployed on multiple nodes in the Kubernetes
cluster. In each pod, a Nginx web server that returns the IP address
of the pod are running. We then set up the IPVS, iptables DNAT,
and Nginx load balancers on one of the nodes(the top right node in
the Figure 6).

We measured the throughput, Request/sec, of the web service
running on the Kubernetes cluster as follows: The HTTP GET re-
quests are sent out by the wrk on the client machine toward the
nodes, using destination IP addresses and port numbers that are
chosen based on the type of the load balancer on which the measure-
ment is performed. The load balancer on the node then distributes
the requests to the pods. Each pod will return HTTP responses to
the load balancer, after which the load balancer returns them to the
client. Based on the number of responses received by wrk on the
client, load balancer performance, in terms of Request/sec can be
obtained.

Figure 7 shows an example of the command-line for wrk and the
corresponding output. The command-line in Figure 7 will generate
40 wrk program threads and allow those threads to send out a total
of 800 concurrent HTTP requests over the period of 30 seconds. The
output example shows information including per thread statistics,
error counts, Request/sec and Transfer/sec.

Figure 8 shows hardware and software configuration used in
our experiments. We configured Nginx HTTP server to return a
small HTTP content, the IP address of the pod, to make a relatively
severe condition for load balancers. The size of the character string
making up an IP address is limited to 15 bytes. If we had chosen
the HTTP response size so that most of the IP packet resulted in
maximum transmission unit(MTU), the performance would have
been limited by the Ethernet bandwidth. However, since we used
small HTTP responses, we could purely measure the load balancer
performance.

Command line:
wrk -c800 -t40 -d30s http://172.16.72.2:8888/
-c: concurrency, -t: # of thread, -d: duration

Output example:
Running 30s test @ http://10.254.0.10:81/
40 threads and 800 connections
Thread Stats Avg Stdev Max +/- Stdev

Latency 15.82ms 41.45ms 1.90s 91.90%
Req/Sec 4.14k 342.26 6.45k 69.24%

4958000 requests in 30.10s, 1.14GB read
Socket errors: connect 0, read 0, write 0, timeout 1

Requests/sec: 164717.63
Transfer/sec: 38.86MB

Figure 7: Example output of benchmark by wrk

Physical Machine Specification:
CPU: Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz
# of Physical Cores: 8
Hyper Threading: enabled
Memory: 32GB
NIC: Broadcom BCM5720 Gigabit Ethernet PCIe

Number of Physical Machines:
Master: 1
Node: 7
Client: 1

Node Software version:
OS: Debian 8.7 (Jessie)
Kernel: 3.16.0-4-amd64 #1 SMP Debian 3.16.39-1 (2016-12-30)

Kubernetes v1.5.2
flannel v0.7.0
etcd version: 3.0.15

Load balancer Software version:
Keepalived: v1.3.2 (12/03,2016)
Nginx: nginx/1.11.1

Worker Pod Software version:
nginx : nginx/1.13.0

Figure 8: Hardware and software configuration

The hardware we used had eight physical CPU cores and a NIC
with 4 rx-queues.

4.2 Overlay network
We used flannel to build the Kubernetes cluster used in our exper-
iment. Flannel has three types of backend, i.e., operating modes,
named host-gw, vxlan, and udp[6].

In the host-gw mode, the flanneld installed on a node simply
configures the routing table based on the IP address assignment
information of the overlay network, which is stored in the etcd.
When a pod on a node sends out an IP packet to pods on the different
node, the former node consults the routing table and learn that the
IP packet should be sent out to the latter. Then, the former node
forms Ethernet frames containing the destination MAC address of
the latter node without changing the IP header, and send them out.
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Figure 9: frame diagram

flannel backend On-premise GCP AWS
host-gw OK NG (OK)
vxlan OK OK OK
udp OK OK OK
Table 1: Viable flannel backend modes

In the case of the vxlan mode, flanneld creates the Linux kernel’s
vxlan device, flannel.1. Flanneld will also configures the routing
table appropriately based on the information stored in the etcd.
When pods on different nodes need to communicate, the packet
is routed to flannel.1. The vxlan functionality of the Linux kernel
identify the MAC address of flannel.1 device on the destination
node, then form an Ethernet frame toward the MAC address. The
vxlan then encapsulates the Ethernet frame in a UDP/IP packet
with a vxlan header, after which the IP packet is eventually sent
out.

In the case of udp mode, flanneld creates the tun device, flannel0,
and configures the routing table. The flannel0 device is connected
to the flanneld daemon itself. An IP packet routed to flannel0 is
encapsulated by flanneld, and eventually sent out to the appropriate
node. The encapsulation is done for IP packets.

Figure 9 shows the schematic diagrams of frame formats for three
backends modes of the flannel overlay network. The MTU sizes in
the backends, assuming the MTU size without encapsulation is 1500
bytes, are also presented. Since packets are not encapsulated in the
host-gw mode, the MTU size remains 1500 bytes. An additional 50
bytes of header is used in the vxlan mode, thereby resulting in an
MTU size of 1450 bytes. In the case of the udp mode, only 28 bytes
of header are used for encapsulation, which results in an MTU size
of 1472 bytes.

Performance of the load balancers can be influenced by the over-
head of encapsulation. Thus, the host-gw mode, where there is
no overhead due to encapsulation, results in the best performance
levels as shown in Section 5. However, the host-gw mode has a
significant drawback that prohibit it to work correctly in cloud plat-
forms. Since the host-gw mode simply sends out a packet without
encapsulation, if there is a cloud gateway between nodes, the gate-
way cannot identify the proper destination, thus drop the packet.

We conducted an investigation to determine which of the flannel
backend mode would be usable on AWS, GCP, and on-premise
data centers. The results are summarized in Table 1. In the case of
GCP, an IP address of /32 is assigned to every VM host and every

81: eth0-tx-0
82: eth0-rx-1
83: eth0-rx-2
84: eth0-rx-3
85: eth0-rx-4
# obtained from /proc/interrupts

Figure 10: RX/TX queues of the hardware

communication between VMs goes through GCP’s gateway. As for
AWS, the VMs within the same subnet communicate directly, while
the VMs in different subnets communicate via the AWS’s gateway.
Since the gateways do not have knowledge of the flannel overlay
network, they drop the packets; thereby, they prohibit the use of
the flannel host-gw mode in those cloud providers.

In our experiment, we compared the performance of load bal-
ancers when different flannel backend modes were used.

4.3 Distributed packet handling
Recently, the performance of CPUs are improved significantly due
to the development of multi-core CPUs. One of the top of the line
server processors from Intel now includes up to 28 cores in a single
CPU. In order to enjoy the benefits of multi-core CPUs in commu-
nication performance, it is necessary to distribute the handling of
interrupts from the NIC and the IP protocol processing to the avail-
able physical cores. Receive Side Scaling (RSS)[25] is a technology
to distribute handling of the interrupt from NIC queues to multiple
CPU cores. Subsequently, Receive Packet Steering (RPS)[25] dis-
tributes the IP protocol processing to multiple CPU cores by issuing
inter core software interrupts.

Since load balancer performance levels could be affected by these
technologies, we conducted an experiment to determine how load
balancer performance level change depending on the RSS and RPS
settings. The following shows how RSS and RPS are enabled and
disabled in our experiment. The NIC used in our experiment is
Broadcom BCM5720, which has four rx-queues and one tx-queue.
Figure 10 shows the interrupt request (IRQ) number assignments
to those NIC queues.

When packets arrive, they are distributed to these rx-queues
depending on the flow each packet belongs to. Each receive queue
has a separate IRQ associated with it. The NIC triggers this to no-
tify a CPU when new packets arrive on the given queue. Then, the
notified CPU handles the interrupt, and performs the protocol pro-
cessing. According to the [25], the CPU cores allowed to be notified
is controlled by setting a hexadecimal value corresponding to the bit
maps indicating the allowed CPU cores in “/proc/irq/$irq_number
/smp_affinity”. For example, in order to route the interrupt for
eth0-rx-1 to CPU0, we should set “/proc/irq/82/smp_affinity” to
binary number 0001, which is 1 in hexadecimal value. Further, in
order to route the interrupt for eth0-rx-2 to CPU1, we should set
“/proc/irq/83/smp_affinity” to binary number 0010, which is 2 in
hexadecimal value.

We refer the setting to distribute interrupts from four rx-queues
to CPU0, CPU1, CPU2 and CPU3 as RSS = on. It is configured as
the following setting:
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RSS=on
echo 1 > /proc/irq/82/smp_affinity
echo 2 > /proc/irq/83/smp_affinity
echo 4 > /proc/irq/84/smp_affinity
echo 8 > /proc/irq/85/smp_affinity

On the other hand, RSS = off means that an interrupt from
any rx-queue is routed to CPU0. It is configured as the following
setting:

RSS=off
echo 1 > /proc/irq/82/smp_affinity
echo 1 > /proc/irq/83/smp_affinity
echo 1 > /proc/irq/84/smp_affinity
echo 1 > /proc/irq/85/smp_affinity

The RPS distributes IP protocol processing by placing the packet
on the desired CPU’s backlog queue and wakes up the CPU using
inter-processor interrupts. We have used the following settings to
enable the RPS:
RPS=on
echo fefe > /sys/class/net/eth0/queues/rx-0/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-1/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-2/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-3/RPS_cpus

Since the hexadecimal value “fefe” represented as “1111 1110
1111 1110” in binary, this setting will allow distributing protocol
processing to all of the CPUs, except for CPU0 and CPU8. In this
paper, we will refer this setting as RPS = on. On the other hand,
RPS = off means that no CPU is allowed for RPS. Here, the IP
protocol processing is performed on the CPUs the initial hardware
interrupt is received. It is configured as the following settings:

RPS=off
echo 0 > /sys/class/net/eth0/queues/rx-0/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-1/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-2/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-3/RPS_cpus

The RPS is especially effective when the NIC does not have
multiple receive queues or when the number of queues is much
smaller than the number of CPU cores. That was the case of our
experiment, where we had a NIC with only four rx-queues, while
there was a CPU with eight physical cores.

5 RESULT AND DISCUSSION
Figure 11 shows the IPVS load balancer performance, that is, the
throughput (Request/sec) of the Nginx web server pods in our exper-
iments. As for the overlay network, we measured the performance
for three flannel backend modes, host-gw (Figure 11(a)), vxlan (Fig-
ure 11(b)) and udp (Figure 11(c)). The following RSS and RPS setting
were compared:

(RSS, RPS) = (off, off)
= (on , off)
= (off, on )

Except for the udp cases, we can see the trend in which the
throughput linearly increases as the pod number increases and then

Figure 11: IPVS results
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Figure 12: Performance limitation due to 1Gbps bandwidth

it eventually saturates. The saturated performance levels indicates
the maximum performance of the IPVS load balancer. The maxi-
mum performance limits depend on the flannel backend mode type
and the (RSS, RPS) settings. From the results in Figures 11(a,b), it
can be seen that if we turn off distributed packet processing, i.e.,
when “(RSS, RPS) = (off, off)”, performance degrades significantly.
In this case, the performance bottleneck is primarily due to packet
processing in a single core.

If we compare the results for the cases when “(RSS, RPS) = (on,
off)” and “(RSS, RPS) = (off, on)”, the latter is better than the former.
This is understandable, since in the case of “RPS = on”, eight physi-
cal cores can be used whereas in the case of “RSS = on” only four
cores can be used, on the hardware used in our experiment. The
performance bottleneck of the case when “RSS = on” is considered
to be due to the fact that the packet processing is only done on four
CPU cores. At first, it was not clear what caused the performance
limit for the case when “RPS = on”, however we now suspect this
is due to 1Gbps bandwidth limitation. A packet level analysis us-
ing tcpdump[15] revealed that 622.72 byte of extra HTTP headers,
TCP/IP headers and ethernet frames are needed for each request in
the case of the wrk benchmack program. This results in the upper
limitation of 196,627 [req/s], where the date size of HTTP response
body is 13 byte, or typical data size in our experiment. Figure 12
shows upper limitation of the performance level for 1Gbps ethernet
together with actual benchmark results and we can conclude that
when “RPS = on”, IPVS performance is limited by bandwidth.

If we compare the performances among the flannel backend
modes types, the host-gw mode where no encapsulation is con-
ducted shows the highest performance level, followed by the vxlan
mode where the Linux kernel encapsulate the Ethernet frame. The
udp mode where flanneld itself encapsulate the IP packet shows
significantly lower performances levels.

Figure 13 shows the performance of the load balancer func-
tionality of the iptables DNAT. As can be seen in the figure, the
performance value increases as the number of the pod increases
linearly, and then becomes saturated at some point, as was the case
with the IPVS results.

Figure 13: iptables results
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Figure 14: IPVS and iptables comparison

Figure 15: Latency cumulative distribution function

If we compare the results for different packet handling settings,
the highest performance is obtained for the case when “(RSS, RPS)
= (off on)”, followed by the case when “(RSS, RPS) = (on, off)”.
The performance result for the case when “(RSS, RPS) = (off, off)”
resulted in the poorest performance level, as was the case for the

IPVS. As for the flannel backend modes, the host-gw shows the
highest performance followed by the vxlan. The udp backend mode
totally degrades the performance level.

Figure 14 compares the performancemeasurement results among
the IPVS, iptables DNAT, and Nginx load balancers with the con-
dition of “(RSS, RPS) = (off on)”. The proposed IPVS load balancer
exhibits almost equivalent performance as the existing iptables
DNAT based load balancer. The Nginx based load balancer shows
no performance improvement even though the number of the Nginx
web server pods is increased. It is understandable because the per-
formance of the Nginx as a load balancer is expected to be similar
to the performance as a web server. Figure 15 compares Cumu-
lative Distribution Function(CDF) of the load balancer latency at
the constant load. The latencies are a little bit smaller for IPVS,
however we consider the difference almost negligible. For example,
the median value at 160K[req/s] load for IPVS and iptables DNAT
are, 1.1 msec and 1.2 msec, respectively. So, we can conclude our
proposed load balancer showed no performance degradation while
providing potability.

6 CONCLUSIONS
In this paper, we proposed a portable load balancer for the Ku-
bernetes cluster systems that is aimed at facilitating migration of
container clusters for web services. We implemented a container-
ized software load balancer that is run by Kubernetes as a part of
container cluster, using Linux kernel’s IPVS, as a proof of concept.
In order to discuss the feasibility of the proposed load balancer, we
built a Kubernetes cluster system and conducted performance mea-
surements. Our experimental results indicate that the IPVS based
load balancer in container improves the portability of the Kuber-
netes cluster system while it shows the similar performance levels
as the existing iptables DNAT based load balancer. We also clari-
fied that choosing the right operating modes of overlay networks
is important for the performance of load balancers. For example,
in the case of flannel, only the vxlan and udp backend operation
modes could be used in the cloud environment, and the udp back-
end significantly degraded their performance. Furthermore, we also
learned that the distribution of packet processing among multiple
CPUs was very important to obtain the maximum performance
levels from load balancers.

The limitations of this work that authors aware of include the
followings: 1) We have not discussed the load balancer redundancy.
Routing traffic to one of the load balancers while keeping redun-
dancy in the container environment is a complex issue, because
standard Layer 2 rendandacy protocols, e.g. VRRP or OSPF[20] that
uses multicast, can not be used in many cases. Further more, provid-
ing uniform methods independent of various cloud environments
and on-premise datacenter is much more difficult. 2) Experiments
are conducted only in a 1Gbps network environment. The experi-
mental results indicate the performance of IPVS may be limited by
the network bandwidth, 1Gbps, in our experiments. Thus, experi-
ments with the faster network setting, e.g. 10Gigabit ethernet, are
needed to investigate the feasibility of the proposed load balancer.
3) We have not yet compared the performance level of proposed
load balance with those of cloud provider’s load balancers. It shoud
be fair to compare the performance of proposed load balancer with
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those of the combination of the cloud load balancer and the iptables
DNAT. The authors leave these issues for future work and they will
be discussed elsewhere.
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